285 research outputs found

    Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes

    Get PDF
    Protein-DNA complexes with loops play a fundamental role in a wide variety of cellular processes, ranging from the regulation of DNA transcription to telomere maintenance. As ubiquitous as they are, their precise in vivo properties and their integration into the cellular function still remain largely unexplored. Here, we present a multilevel approach that efficiently connects in both directions molecular properties with cell physiology and use it to characterize the molecular properties of the looped DNA-lac repressor complex while functioning in vivo. The properties we uncover include the presence of two representative conformations of the complex, the stabilization of one conformation by DNA architectural proteins, and precise values of the underlying twisting elastic constants and bending free energies. Incorporation of all this molecular information into gene-regulation models reveals an unprecedented versatility of looped DNA-protein complexes at shaping the properties of gene expression.Comment: Open Access article available at http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    A Live-Attenuated HSV-2 ICP0− Virus Elicits 10 to 100 Times Greater Protection against Genital Herpes than a Glycoprotein D Subunit Vaccine

    Get PDF
    Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0− virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0− virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein

    Overexpression of a Common Wheat Gene TaSnRK2.8 Enhances Tolerance to Drought, Salt and Low Temperature in Arabidopsis

    Get PDF
    Drought, salinity and low temperatures are major factors limiting crop productivity and quality. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling in plants. In this study, TaSnRK2.8, a SnRK2 member in wheat, was cloned and its functions under multi-stress conditions were characterized. Subcellular localization showed the presence of TaSnRK2.8 in the cell membrane, cytoplasm and nucleus. Expression pattern analyses in wheat revealed that TaSnRK2.8 was involved in response to PEG, NaCl and cold stresses, and possibly participates in ABA-dependent signal transduction pathways. To investigate its role under various environmental stresses, TaSnRK2.8 was transferred to Arabidopsis under control of the CaMV-35S promoter. Overexpression of TaSnRK2.8 resulted in enhanced tolerance to drought, salt and cold stresses, further confirmed by longer primary roots and various physiological characteristics, including higher relative water content, strengthened cell membrane stability, significantly lower osmotic potential, more chlorophyll content, and enhanced PSII activity. Meanwhile, TaSnRK2.8 plants had significantly lower total soluble sugar levels under normal growing conditions, suggesting that TaSnRK2.8 might be involved in carbohydrate metabolism. Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI3, ABI4, ABI5), stress-responsive genes, including two ABA-dependent genes (RD20A, RD29B) and three ABA-independent genes (CBF1, CBF2, CBF3), were generally higher in TaSnRK2.8 plants than in WT/GFP controls under normal/stress conditions. Our results suggest that TaSnRK2.8 may act as a regulatory factor involved in a multiple stress response pathways

    Categorial Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition

    Get PDF
    Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric) theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes). In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe—replaced by the relationships between the maps that transform them

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    Biophysical and electrochemical studies of protein-nucleic acid interactions

    Get PDF
    This review is devoted to biophysical and electrochemical methods used for studying protein-nucleic acid (NA) interactions. The importance of NA structure and protein-NA recognition for essential cellular processes, such as replication or transcription, is discussed to provide background for description of a range of biophysical chemistry methods that are applied to study a wide scope of protein-DNA and protein-RNA complexes. These techniques employ different detection principles with specific advantages and limitations and are often combined as mutually complementary approaches to provide a complete description of the interactions. Electrochemical methods have proven to be of great utility in such studies because they provide sensitive measurements and can be combined with other approaches that facilitate the protein-NA interactions. Recent applications of electrochemical methods in studies of protein-NA interactions are discussed in detail

    Polymorphisms of Serotonin Receptor 2A and 2C Genes and COMT in Relation to Obesity and Type 2 Diabetes

    Get PDF
    BACKGROUND:Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs) of these genes with obesity and metabolic traits. METHODOLOGY/PRINCIPAL FINDINGS:In a population of 166 200 young men examined at the draft boards, obese men (n = 726, BMI> or =31.0 kg/m(2)) and a randomly selected group (n = 831) were re-examined at two surveys at mean ages 46 and 49 years (S-46, S-49). Anthropometric, physiological and biochemical measures were available. Logistic regression analyses were used to assess age-adjusted odds ratios. No significant associations were observed of 5HT2A rs6311, 5HT2C rs3813929 and COMT rs4680 with obesity, except that COMT rs4680 GG-genotype was associated with fat-BMI (OR = 1.08, CI = 1.01-1.16). The SNPs were associated with a number of physiological variables; most importantly 5HT2C rs3813929 T-allele was associated with glucose (OR = 4.56, CI = 1.13-18.4) and acute insulin response (OR = 0.65, CI = 0.44-0.94) in S-49. COMT rs4680 GG-genotype was associated with glucose (OR = 1.04, CI = 1.00-1.09). Except for an association between 5HT2A rs6311 and total-cholesterol at both surveys, significant in S-46 (OR = 2.66, CI = 1.11-6.40), no significant associations were observed for the other phenotypes. Significant associations were obtained when combined genotype of 5HT2C rs3813929 and COMT rs4680 were examined in relation to BMI (OR = 1.12, CI = 1.03-1.21), fat-BMI (OR = 1.22, CI = 1.08-1.38), waist (OR = 1.13, CI = 1.04-1.22), and cholesterol (OR = 5.60, CI = 0.99-31.4). Analyses of impaired glucose tolerance (IGT) and type 2 diabetes (T2D) revealed, a 12.3% increased frequency of 5HT2C rs3813929 T-allele and an 11.6% increased frequency of COMT rs4680 GG-genotype in individuals with IGT or T2D (chi(2), p = 0.05 and p = 0.06, respectively). Examination of the combined genotypes of 5HT2C and COMT showed a 34.0% increased frequency of IGT or T2D (chi(2), p = 0.01). CONCLUSIONS:The findings lend further support to the involvement of serotonin, noradrenaline and dopamine pathways on obesity and glucose homeostasis, in particular when combined genotype associations are explored

    Cervical cytological changes in HIV-infected patients attending care and treatment clinic at Muhimbili National Hospital, Dar es Salaam, Tanzania

    Get PDF
    \ud Tanzania is among Sub-Saharan countries mostly affected by the HIV and AIDS pandemic, females being more vulnerable than males. HIV infected women appear to have a higher rate of persistent infection by high risk types of human papillomavirus (HPV) strongly associated with high-grade squamous intraepithelial lesions (HSIL) and invasive cervical carcinoma. Furthermore, although HIV infection and cervical cancer are major public health problems, the frequency and HIV/HPV association of cervical cancer and HSIL is not well documented in Tanzania, thus limiting the development of preventive and therapeutic strategies. A prospective unmatched, case-control study of HIV-seropositive, ≥ 18 years of age and consenting non-pregnant patients attending the care and treatment center (CTC) at Muhimbili National Hoospital (MNH) as cases was done between 2005 and 2006. HIV seronegative, non-pregnant and consenting women recruited from the Cervical Cancer Screening unit (CCSU) at ORCI were used as controls while those who did not consent to study participation and/or individuals under < 18 years were excluded. Pap smears were collected for routine cytodiagnosis and P53 immunohistochemistry (IHC). Cervical lesions were classified according to the Modified Bethesda System. A total of 170 participants from the two centers were recruited including 50 HIV-seronegative controls were from the CCSU. Ages ranged from 20-66 years (mean 40.5 years) for cases and 20-69 years (mean 41.6 years) for controls. The age group 36-45 years was the most affected by HIV (39.2%, n = 47). Cervicitis, squamous intraepithelial lesions (SIL) and carcinoma constituted 28.3% (n = 34), 38.3% (n = 46) and 5.8% (n = 7) respectively among cases, and 28% (n = 14), 34% (n = 17) and 2% (n = 1) for controls, although this was not statistically significant (P-value = 0.61). IHC showed that p53 was not detectable in HPV + Pap smears and cell blocks indicating possible degradation. The frequency of SIL and carcinoma appeared to be higher among HIV-infected women on HAART compared to seronegative controls and as expected increased with age. HIV seropositive patients appeared to present earlier with SIL compared to those HIV seronegative suggesting a role of HIV in altering the natural history of HPV infection and cervical lesions. The absence of p53 immunoreactivity in HPV + lesions is indicative of the ability of HPV E6 proteins to interact with the tumor suppressor gene and pave way for viral-induced oncogenesis in the studied Tanzanian women.\u

    Efficient Double Fragmentation ChIP-seq Provides Nucleotide Resolution Protein-DNA Binding Profiles

    Get PDF
    Immunoprecipitated crosslinked protein-DNA fragments typically range in size from several hundred to several thousand base pairs, with a significant part of chromatin being much longer than the optimal length for next-generation sequencing (NGS) procedures. Because these larger fragments may be non-random and represent relevant biology that may otherwise be missed, but also because they represent a significant fraction of the immunoprecipitated material, we designed a double-fragmentation ChIP-seq procedure. After conventional crosslinking and immunoprecipitation, chromatin is de-crosslinked and sheared a second time to concentrate fragments in the optimal size range for NGS. Besides the benefits of increased chromatin yields, the procedure also eliminates a laborious size-selection step. We show that the double-fragmentation ChIP-seq approach allows for the generation of biologically relevant genome-wide protein-DNA binding profiles from sub-nanogram amounts of TCF7L2/TCF4, TBP and H3K4me3 immunoprecipitated material. Although optimized for the AB/SOLiD platform, the same approach may be applied to other platforms
    corecore